

Compresseurs à vis

Série CSD(X)

Avec le PROFIL SIGMA de réputation mondiale Débit 1,1 à 17,5 m³/min – Pression 5,5 à 15 bar

Série CSD / CSDX

CSD(X) – encore plus efficaces

Avec la nouvelle version de sa série CSD(X), KAESER place la barre très haut en termes de disponibilité et d'efficacité énergétique des compresseurs. Non seulement les compresseurs à vis CSD(X) encore améliorés débitent plus d'air comprimé avec moins d'énergie, mais ils ne laissent rien à désirer quant à la polyvalence, à la facilité de maniement et d'entretien et au respect de l'environnement.

CSD(X) - des écocnomies sur tous les plans

Les centrales CSD(X) encore améliorées permettent d'économiser de l'énergie sur tous les plans. Leurs blocs compresseurs possèdent des rotors à vis au PROFIL SIGMA optimisé, et elles sont commandées par le SIGMA CONTROL 2 basé sur un PC industriel. Cette commande de compresseur, et en particulier son mode de régulation dynamique, adapte le débit de la centrale à la consommation réelle d'air comprimé afin de minimiser les temps de marche à vide coûteux.

Variation de vitesse avec le moteur à réluctance

Le nouveau moteur à réluctance réunit les avantages des moteurs asynchrones et des moteurs synchrones. Le rotor ne contient pas d'aluminium, ni de cuivre ou de coûteuses terres rares, et le moteur est donc très robuste et facile d'entretien. Du fait de la construction du moteur avec le nouveau rotor, les pertes de chaleur sont pratiquement nulles, d'où une température des roulements nettement plus basse et donc une plus grande longévité à la fois des roulements et du moteur. Associé au convertisseur de fréquence parfaitement adapté, le moteur synchrone à réluctance réduit les pertes par rapport à un moteur asynchrone, surtout en charge partielle.

Parfaits pour les stations d'air comprimé

Les compresseurs à vis de la série CSD(X) sont parfaits pour constituer des stations d'air comprimé industrielles d'une très grande efficacité énergétique. Leur commande interne SIGMA CONTROL 2 propose de nombreux canaux de communication qui permettent d'intégrer les centrales dans des systèmes de gestion prioritaires comme le SIGMA AIR MANAGER de KAESER ou des systèmes de contrôle-commande, avec une facilité et une efficacité inédites.

Gestion électronique de la température (ETM)

La vanne motorisée ETM intégrée au circuit frigorifique permet une gestion électronique innovante de la température au moyen de capteurs. La nouvelle commande de compresseur SIGMA CONTROL 2 prend en compte la température d'aspiration et la température du compresseur pour empêcher la formation de condensats lors de variations du taux d'humidité de l'air. Le système ETM régule la température du fluide de manière dynamique. Il améliore le rendement énergétique du fait de la basse température du fluide et permet à l'utilisateur d'adapter encore mieux la récupération de calories à ses besoins effectifs.

Pourquoi récupérer les calories ?

Ou plutôt : pourquoi pas ? Chaque compresseur à vis transforme 100 % de l'énergie électrique consommée en énergie calorifique. Or, jusqu'à 96 % de cette énergie est récupérable, par exemple pour le chauffage. Cela permet de réduire la consommation d'énergie primaire et d'améliorer considérablement le bilan énergétique global de l'entreprise.

Facilité d'entretien

Efficace sur toute la ligne

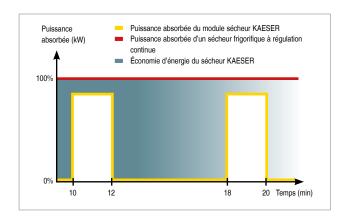
Économie d'énergie avec le PROFIL SIGMA

La pièce maîtresse de chaque centrale CSD(X) est le bloc compresseur au PROFIL SIGMA à économie d'énergie. Il est optimisé pour une parfaite circulation de l'air et contribue fortement à la puissance spécifique exceptionnelle de toutes les centrales CSD(X).

Efficacité de la commande SIGMA CONTROL 2

La commande interne SIGMA CONTROL 2 permet de commander et de contrôler efficacement le fonctionnement du compresseur. L'écran et le lecteur RFID facilitent la communication et sécurisent l'accès à la commande. Les diverses interfaces assurent la connectivité de la commande et l'emplacement pour carte mémoire SD simplifie les mises à jour.

Anticiper l'avenir avec les moteurs IE4


Seul KAESER vous propose dès maintenant des compresseurs équipés de série de moteurs IE4 Super Premium Efficiency qui rendent le fonctionnement encore plus économique et augmentent l'efficacité énergétique.

Pour une température optimale

Le système électronique de gestion de température (ETM) innovant régule la température du fluide de manière dynamique en fonction des conditions de service pour éviter la formation de condensats et augmenter l'efficacité énergétique.

Air comprimé de haute qualité avec le module sécheur frigorifique

Régulation à économie d'énergie

Le sécheur frigorifique intégré dans les centrales CSD(X) T doit son rendement à sa régulation à économie d'énergie. Il ne fonctionne qu'à la demande, ce qui permet d'obtenir une rentabilité maximale tout en garantissant la qualité d'air comprimé requise.

Double refroidissement

Deux ventilateurs indépendants et une carrosserie séparée assurent d'importantes réserves thermiques. Elles permettent au module sécheur frigorifique de fournir la qualité d'air comprimé requise, de manière fiable et constante, même à une température ambiante élevée.

Séparateur cyclonique KAESER fiable

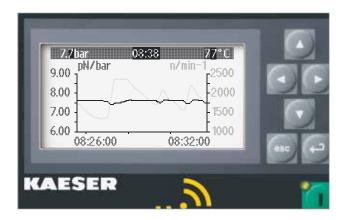
Le séparateur cyclonique KAESER monté en amont du sécheur frigorifique et équipé d'un purgeur électronique de condensats ECO-DRAIN assure la préséparation et l'évacuation fiables des condensats, même lorsque la température ambiante et l'humidité de l'air sont élevées.

Un frigorigène durable

Le règlement F-Gaz UE 517/2014 vise à réduire les émissions de gaz à effet de serre fluorés afin de limiter le réchauffement climatique. Les nouvelles centrales T sont chargées en frigorigène R-513A dont l'indice PRP (potentiel de réchauffement planétaire) très bas est un gage de sécurité et de pérennité sur le cycle de vie complet.

La norme DIN EN 50598

La norme européenne DIN EN 50598 sur l'écoconception définit les critères d'efficacité énergétique des machines entraînées par moteur électrique. Elle spécifie le rendement du système en tenant compte des pertes du moteur et du convertisseur. Avec des pertes énergétiques inférieures de 20 % à la valeur de référence, les centrales KAESER sont largement conformes aux exigences de la norme.


Efficacité énergétique maximale

Les centrales à vitesse variable KAESER de la série CS-D(X) répondent à la classe de rendement IES2 et réalisent donc l'efficacité maximale selon la norme EN 50598. Un système d'entraînement de la classe IES2 se caractérise par des pertes énergétiques inférieures d'au moins 20 % à la valeur de référence.

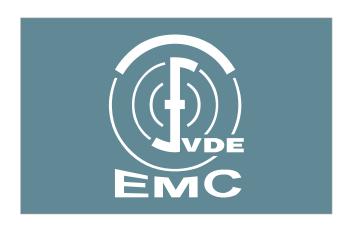
Séries CSD (T) SFC / CSDX (T) SFC

Compresseur à vitesse variable avec

moteur synchrone à réluctance


Pression constante

Le débit s'adapte à la consommation d'air comprimé, dans la plage de réglage et en fonction de la pression réseau. De ce fait, la pression de service reste constante avec une tolérance de $\pm 0,1$ bar seulement. L'exploitant peut donc abaisser la pression maximale, et par conséquent réduire sa facture énergétique.


Armoire SFC séparée

Le convertisseur de fréquence SFC est logé dans sa propre armoire qui le protège de la chaleur dégagée par le compresseur. Le ventilateur séparé assure une climatisation optimale de l'armoire pour une performance et une longévité maximales du convertisseur.

Robustesse et facilité d'entretien

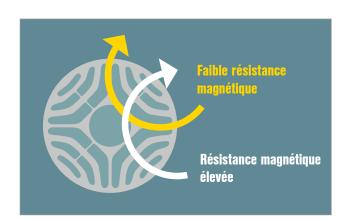
Le moteur à réluctance synchrone est robuste et facile d'entretien : son rotor ne contient pas d'aluminium, ni de cuivre ou de matériaux magnétiques onéreux. Le remplacement des roulements et des rotors est donc aussi simple que pour un moteur asynchrone. Du fait de la construction du moteur, les pertes de chaleur du rotor sont pratiquement nulles, d'où une température des roulements nettement plus basse et donc une plus grande longévité des roulements et du moteur.

Centrale certifiée CEM

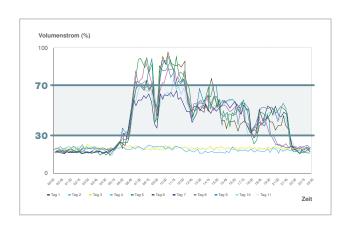
L'armoire SFC, la commande SIGMA CONTROL 2 et la centrale dans son ensemble sont contrôlées et certifiées conformément à la directive CEM pour les réseaux industriels de classe A1 selon la norme EN 55011.

Séries CSD (T) SFC / CSDX (T) SFC

Efficacité maximale avec le moteur synchrone à réluctance à vitesse variable

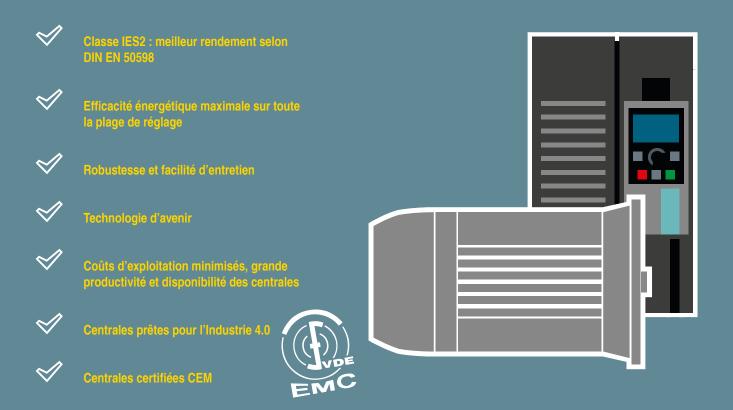

Moteur synchrone à réluctance efficace

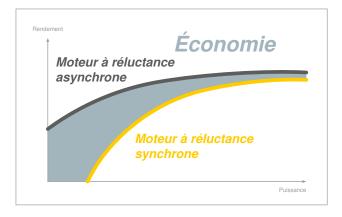
Cette série de moteurs réunit les avantages des moteurs asynchrones et des moteurs synchrones. Le rotor n'utilise pas d'aluminium ni de cuivre ou de coûteux aimants en terres rares, mais un empilement de tôles électromagnétiques à la géométrie spécialement étudiée. De ce fait, l'entraînement est robuste et facile à entretenir.


En combinaison avec un convertisseur de fréquence haute performance

Le convertisseur de fréquence Siemens possède un algorithme de réglage spécialement adapté au moteur. Grâce à la combinaison optimale du convertisseur de fréquence et du moteur synchrone à réluctance, le système d'entraînement KAESER atteint la classe IES2, soit le meilleur rendement défini par la norme EN 50598.

Principe de fonctionnement du moteur à réluctance


Dans un moteur synchrone à réluctance, le couple est créé par les forces de réluctance. Le rotor possède des pôles saillants et son matériau électromagnétique, comme par exemple du fer doux, présente une grande perméabilité aux champs magnétiques.



Coûts d'exploitation minimisés et grande productivité

Le rendement nettement supérieur à celui des moteurs asynchrones comparables, surtout en charge partielle, permet des économies d'énergie considérables. Le faible couple d'inertie des moteurs synchrones à réluctance permet des durées de cycle très courtes, ce qui augmente la productivité de la machine ou de la centrale.

Vos avantages en bref :

Domaine d'utilisation d'une centrale à vitesse variable avec un moteur à réluctance synchrone

Selon une étude, le profil de consommation d'air comprimé typique se situe entre 30 et 70 % de la consommation maximale. Or c'est précisément en charge partielle qu'un compresseur à vis à vitesse variable avec un moteur synchrone à réluctance dégage le maximum d'économies d'énergie.

Rendement élevé en charge partielle

En charge partielle, les moteurs synchrones à réluctance ont un rendement nettement plus élevé que les moteurs asynchrones par exemple. Ils permettent jusqu'à 10 % d'économie par rapport aux centrales à vitesse variables conventionnelles.

Séries CSD et CSDX - refroidies par eau

... avec des échangeurs de chaleur à plaques

Deux échangeurs de chaleur en inox assurent une grande puissance de refroidissement pour un excellent transfert thermique grâce au nervurage des plaques en cuivre brasées. La solution de choix pour les applications nécessitant de l'eau de refroidissement propre.

... avec des échangeurs de chaleur à faisceau tubulaire

Les échangeurs de chaleur à faisceau tubulaire en alliage cupro-nickel (CuNi10Fe) sont moins sensibles à l'encrassement que les échangeurs à plaques de même puissance de refroidissement, et leurs éléments amovibles sont simples à nettoyer ou à remplacer. Ils sont

compatibles avec l'eau de mer et conviennent donc pour les compresseurs installés sur des bateaux. Par ailleurs, leurs pertes de charge très faibles se traduisent par des économies d'énergie et donc de coûts.

Système de récupération de calories

Chauffage

Rien que des avantages

Un compresseur convertit 100 % de l'énergie électrique consommée en énergie calorifique. Or, jusqu'à 96 % de cette énergie est réutilisable avec la récupération de calories. Exploitez ce potentiel!

Chauffage par air chaud

Un système de chauffage facile à réaliser : grâce à la grande réserve de surpression des ventilateurs radiaux, une simple gaine et des registres thermostatés permettent d'envoyer la chaleur émise par le compresseur, autrement dit l'air chaud, dans le local à chauffer.

Eau chaude pour le chauffage et les usages industriels et sanitaires

Les échangeurs de chaleur PWT utilisent l'énergie calorifique des compresseurs pour chauffer de l'eau à +70 °C. Températures supérieures sur demande.

De l'eau chaude propre

Les échangeurs de sécurité spéciaux sont utilisés lorsque aucun autre circuit d'eau n'est prévu et que l'eau à chauffer doit satisfaire aux plus hautes exigences de pureté, comme par exemple l'eau de lavage dans l'agroalimentaire.

^{*)} Proposés en option

La récupération de calories

Une solution économique, polyvalente et flexible

Échangeur de chaleur à plaques PTG

Les échangeurs de chaleur à plaques PTG sont constitués de plaques en inox nervurées et brasées au cuivre. Ils offrent un très bon transfert thermique et se distinguent par leur construction compacte. Les échangeurs de chaleur PTG peuvent être intégrés dans des installations d'alimentation en eau chaude déjà en place et sont adaptés aux utilisations industrielles.

Si le chauffage est indispensable en hiver, une certaine puissance calorifique est également nécessaire à l'entre-saison. Autrement dit, il faut chauffer plus ou moins toute l'année.

Maîtriser les ressources énergétiques

Face à la hausse continuelle du prix de l'énergie, la maîtrise des ressources énergétiques est une nécessité à la fois écologique et économique. La chaleur dégagée par les compresseurs peut non seulement être utilisée pour le chauffage pendant les mois d'hiver, mais permet de réaliser des économies d'énergie tout au long l'année.

Apport d'énergie calorifique dans des systèmes de chauffage

Jusqu'à 76 % de la puissance électrique consommée par un compresseur peut être utilisée dans des chaufferies à eau chaude ou des systèmes de production d'eau industrielle. Cela permet de réduire considérablement la consommation d'énergie primaire nécessaire pour le chauffage.

Équipement

Centrale complète

Prête à fonctionner, entièrement automatique, superinsonorisée, isolée contre les vibrations, panneaux extérieurs dotés d'un revêtement par poudre ; utilisable à des températures ambiantes jusqu'à +45 °C.

Insonorisation

Garnissage de laine de roche doublée de fibres de verre.

Amortissement antivibratoire

Silent-blocs, double amortissement contre les vibrations.

Bloc compresseur

Mono-étagé, à injection de fluide pour le refroidissement optimal des rotors, bloc compresseur à vis KAESER d'origine avec le PROFIL SIGMA à économie d'énergie.

Entraînement

Entraînement direct sans engrenage, accouplement flexible.

Moteur électrique

Centrale standard avec moteur IE4 à très haut rendement, fabrication allemande, IP 55, isolation de classe F pour une réserve thermique supplémentaire ; surveillance du moteur par sonde de température PT100 ; roulements à graisser.

Option convertisseur de fréquence SFC

Moteur synchrone à réluctance, fabrication allemande, IP 55, convertisseur de fréquence Siemens, rendement global conforme à IES2, roulements à graisser.

Équipement électrique

Armoire électrique IP 54 ; transformateur de commande, convertisseur de fréquence Siemens ; contacts secs pour les ventilateurs.

Circuits d'air et de fluide de refroidissement

Filtre à air sec, soupape pneumatique d'aspiration et de mise à vide ; réservoir de fluide de refroidissement avec système de séparation à trois étages, soupape de sécurité, clapet antiretour à pression minimale, système électronique de gestion de la température ETM et filtre à fluide écologique dans le circuit de fluide de refroidissement, tuyauteries rigides avec raccords élastiques.

Refroidissement

Refroidissement par air, refroidisseurs en aluminium séparés pour l'air comprimé et le fluide de refroidissement, ventilateur radial avec moteur électrique séparé, système électronique de gestion de la température (ETM).

Sécheur frigorifique

Sans CFC, frigorigène R-513A, circuit frigorifique hermétique, compresseur frigorifique rotatif avec fonction d'arrêt à économie d'énergie, régulation de gaz chauds, purgeur électronique de condensats, séparateur cyclonique monté en amont.

Récupération de calories

Système intégré pour la récupération de calories (échangeur de chaleur à plaques) disponible en option.

SIGMA CONTROL 2

Témoins (LED) pour signalisation tricolore de l'état de fonctionnement ; affichage en texte clair, 30 langues au choix, touches à effleurement avec pictogrammes, surveillance et régulation automatiques, modes de régulation installés de série Dual, Quadro, Vario, dynamique et continu ; interface Ethernet, modules de communication en option pour Profibus DP, Modbus, Profinet et Devicenet ; emplacement de carte mémoire SD pour enregistrement de données et mises à jour, lecteur RFID, serveur Web.

SIGMA AIR MANAGER 4.0

La régulation adaptative 3-Dadvanced calcule de nombreux paramètres de manière anticipée pour sélectionner la configuration offrant le meilleur rendement énergétique. Le SIGMA AIR MANAGER 4.0 optimise en permanence le débit et la consommation d'énergie des compresseurs en fonction de la consommation réelle d'air comprimé grâce au PC industriel avec un micro-processeur multi-cœur, combiné à la régulation 3-Dadvanced. Avec les convertisseurs de bus SIGMA NETWORK (SBU), l'utilisateur est en mesure d'adapter le système à ses besoins spécifiques. Les SBU sont dotés au choix d'entrées et sorties numériques et analogiques et/ ou de ports SIGMA NETWORK. Ils permettent la visualisationde la pression, du débit, du point de rosée, de la puissance ou des signalisations de défauts.

Fonctionnement

L'air passe par le filtre d'aspiration (1) et la soupape d'aspiration (2) pour arriver dans le bloc compresseur au PROFIL SIGMA (3). Le bloc compresseur (3) est entraîné par un moteur électrique à haut rendement (4). Le fluide de refroidissement injecté à la compression est séparé de l'air dans le réservoir séparateur (5). L'air comprimé passe par la cartouche séparatrice d'huile bi-étagée (6) et le clapet antiretour à pression minimale (7) avant d'arriver dans le refroidisseur final (8). Les condensats produits par le refroidissement sont séparés de l'air comprimé par le séparateur cyclonique intégré (9) puis évacués par un ECO-DRAIN (10). L'air comprimé sans condensats sort de la centrale par le raccordement (11). La chaleur de la compression est absorbée par le fluide de refroidissement et dissipée dans l'atmosphère par le refroidisseur de fluide (12) au moyen d'un moto-ventilateur séparé (13). L'huile de refroidissement est ensuite épurée par le filtre à fluide écologique (14). Le système de gestion électronique de température (15) assure des températures de service les plus basses possibles. L'armoire électrique (16) renferme la commande de compresseur SIGMA CONTROL 2 (17) et, selon la version, le démarreur étoile-triangle ou le convertisseur de fréquence (SFC). La centrale peut être équipée en option d'un sécheur frigorifique (18) qui refroidit l'air comprimé à +3 °C et élimine donc toute humidité.

- (1) Filtre d'aspiration
- (2) Soupape d'aspiration
- (3) Bloc compresseur au PROFIL SIGMA
- (4) Moteur IE4
- (5) Réservoir séparateur de fluide
- (6) Cartouche séparatrice d'huile
- (7) Clapet antiretour à pression minimale
- (8) Refroidisseur final d'air comprimé
- (9) Séparateur cyclonique KAESER
- (10) Purgeur de condensats (ECO-DRAIN)
- (11) Raccordement d'air comprimé
- (12) Refroidisseur de fluide
- (13) Ventilateur
- (14) Filtre à fluide écologique
- (15) Gestion électronique de la température
- (16) Armoire électrique avec convertisseur de fréquence SFC intégré
- (17) Commande de compresseur SIGMA CONTROL 2
- (18) Module sécheur frigorifique

Caractéristiques techniques - CSD

Version de base

Modèle	Pression de service	Débit ') de la centrale à la pression de service	Pression maxi	Puissance nominale moteur	Dimensions I x P x H	Raccordement d'air comprimé	Niveau de pression acoustique ")	Poids
	bar	m³/min	bar	kW	mm		dB(A)	kg
	7,5	8,26	8,5					
CSD 85	10	6,89	12	45	1760 x 1110 x 1900	G 2	70	1250
	13	5,50	15					
	7,5	10,14	8,5				71	
CSD 105	10	8,18	12	55	1760 x 1110 x 1900	G 2		1290
	13	6,74	15					
	7,5	12,02	8,5					
CSD 125	10	10,04	12	75	1760 x 1110 x 1900	G 2	72	1320
	13	8,06	15					

Version SFC avec moteur à vitesse variable

Modèle	Pression de service	Débit ') de la centrale à la pression de service	Pression maxi	Puissance nominale moteur	Dimensions I x P x H	Raccordement d'air comprimé	Niveau de pression acoustique ")	Poids
	bar	m³/min	bar	kW	mm		dB(A)	kg
	7,5	1,99 - 8,37	8,5					
CSD 85 SFC	10	1,49 - 7,21	12	45	1760 x 1110 x 1900	G 2	72	1220
	13	1,16 - 6,15	15					
	7,5	2,32 - 10,01	8,5					
CSD 105 SFC	10	1,91 - 8,79	12	55	1760 x 1110 x 1900	G 2	73	1280
	13	1,39 - 7,41	15					
	7,5	2,90 - 12,22	8,5					
CSD 125 SFC	10	2,22 - 10,74	12	75	1760 x 1110 x 1900	G 2	74	1300
	13	1,81 - 8,98	15					

^{*)} Débit de la centrale selon ISO 1217:2009, annexe C/E, pression d'aspiration 1 bar (abs.), température de refroidissement et d'aspiration d'air +20 °C **) Niveau de pression acoustique selon ISO 2151 et la norme de base ISO 9614-2, tolérance ± 3 dB (A)

Version T avec sécheur frigorifique intégré (frigorigène****) R-513A)

Modèle	Pression de service	Débit ') de la centrale à la pression de service	Pression maxi	Puissance nomi- nale moteur	Puissance absorbée du sécheur frigorifique ***)	Dimensions I x P x H	Raccordement d'air comprimé	Niveau de pression acoustique **)	Poids
	bar	m³/min	bar	kW		mm		dB(A)	kg
	7,5	8,26	8,5						
CSD 85 T	10	6,89	12	45	0,92	2160 x 1110 x 1900	G 2	70	1410
	13	5,50	15						
	7,5	10,14	8,5						
CSD 105 T	10	8,18	12	55	0,92	2160 x 1110 x 1900	G 2	71	1450
	13	6,74	15						
	7,5	12,02	8,5		1,30				
CSD 125 T	10	10,04	12	75	0,92	2160 x 1110 x 1900	G 2	72	1510
	13	8,06	15		0,92				

Version T-SFC avec moteur à vitesse variable et sécheur frigorifique intégré (frigorigène "") R-513A)

Modèle	Pression de service	Débit ⁷⁾ de la centrale à la pression de service	Pression maxi	Puissance nomi- nale moteur	Puissance absorbée du sécheur frigorifique ***)	Dimensions I x P x H	Raccordement d'air comprimé	Niveau de pression acoustique **)	Poids
	bar	m³/min	bar	kW		mm		dB(A)	kg
	7,5	1,99 - 8,37	8,5						
CSD 85 T SFC	10	1,49 - 7,21	12	45	0,92	2160 x 1110 x 1900	G 2	72	1380
	13	1,16 - 6,15	15						
	7,5	2,32 - 10,01	8,5						
CSD 105 T SFC	10	1,91 - 8,79	12	55	0,92	2160 x 1110 x 1900	G 2	73	1440
	13	1,39 - 7,41	15						
	75	2,9 - 12,22	8,5		1,30				
CSD 125 T SFC	10	2,22 - 10,74	12	75	0,92	2160 x 1110 x 1900	G 2	74	1490
	13	1,81 - 8,98	15		0,92				

Puissance absorbée (kW) à la température ambiante de +20 °C et 30 % d'humidité relative de l'air
 Contient des gaz à effet de serre fluorés répertoriés dans le protocole de Kyoto : PRP 631, charge de frigorigène 1,45 kg, 0,9 t en équivalent CO₂
 Uniquement pour les CSD 125 T (T-SFC) avec une pression de service de 8,5 bar : PRP 631, charge de frigorigène 1,65 kg, 1,0 t en équivalent CO₂

Caractéristiques techniques CSDX

Version de base

Modèle	Pression de service	Débit ') de la centrale à la pression de service	Pression maxi	Puissance nominale moteur	Dimensions I x P x H	Raccordement d'air comprimé	Niveau de pression acoustique ")	Poids
	bar	m³/min	bar	kW	mm		dB(A)	kg
	7,5 13,74 8,5							
CSDX 140	10	11,83	12	75	2110 x 1290 x 1950	G 2	71	1830
	13	9,86	15					
	7,5	16,16	8,5					
CSDX 165	10	13,53	12	90	2110 x 1290 x 1950	G 2	72	1925
	13	11,49	15					

Version SFC avec moteur à vitesse variable

Modèle	Pression de service	Débit ') de la centrale à la pression de service	Pression maxi	Puissance nominale moteur	Dimensions I x P x H	Raccordement d'air comprimé	Niveau de pression acoustique ")	Poids
	bar	m³/min	bar	kW	mm		dB(A)	kg
	7,5	3,46 - 13,37	8,5				72	
CSDX 140 SFC	10	2,82 - 11,60	10	75	2110 x 1290 x 1950	G 2		1650
	13	2,13 - 10,04	13					
	7,5	3,87 - 16,03	8,5					
CSDX 165 SFC	10	3,34 - 13,91	12	90	2110 x 1290 x 1950	G 2	73	1750
	13	2,68 - 11,84	13					

^{*)} Débit de la centrale selon ISO 1217:2009, annexe C/E, pression d'aspiration 1 bar (abs.), température de refroidissement et d'aspiration d'air +20 °C **) Niveau de pression acoustique selon ISO 2151 et la norme de base ISO 9614-2, tolérance ± 3 dB (A)

Version T avec sécheur frigorifique intégré (frigorigène *****) R-513A)

Modèle	Pression de service	Débit ") de la centrale à la pression de service	Pression maxi	Puissance nomi- nale moteur	Puissance absorbée du sécheur frigorifique ***)	Dimensions I x P x H	Raccordement d'air comprimé	Niveau de pression acoustique **)	Poids
	bar	m³/min	bar	kW		mm		dB(A)	kg
	7,5	13,74	8,5						
CSDX 140 T	10	11,83	12	75	1,38	2510 x 1290 x 1950	G 2	71	2045
	13	9,86	15						
	7,5	16,16	8,5						
CSDX 165 T	10	13,53	12	90	1,38	2510 x 1290 x 1950	G 2	72	2140
	13	11,49	15						

Version T-SFC avec moteur à vitesse variable et sécheur frigorifique intégré (frigorigène "") R-513A)

Modèle	Pression de service	Débit ") de la centrale à la pression de service	Pression maxi	Puissance nomi- nale moteur	Puissance absorbée du sécheur frigorifique ***)	Dimensions I x P x H	Raccordement d'air comprimé	Niveau de pression acoustique **)	Poids
	bar	m³/min	bar	kW		mm		dB(A)	kg
	7,5	3,46 - 13,37	8,5					72	1865
CSDX 140 T SFC	10	2,82 - 11,6	12	75	1,38	2510 x 1290 x 1950	G 2		
	13	2,13 - 10,04	15						
	7,5	3,87 - 16,03	8,5						
CSDX 165 T SFC	10	3,34 - 13,91	12	90	1,38	2510 x 1290 x 1950	G 2	73	1965
	13	2,68 - 11,84	15						

^{***)} Puissance absorbée (kW) à la température ambiante de +20 °C et 30 % d'humidité relative de l'air ****) Contient des gaz à effet de serre fluorés répertoriés dans le protocole de Kyoto : PRP 631, charge de frigorigène 1,5 kg, 0,9 t en équivalent CO₂

Présence globale

KAESER, l'un des premiers constructeurs de compresseurs et de systèmes d'air comprimé, est présent partout dans le monde.

Grâce à ses filiales et à ses partenaires répartis dans plus de 100 pays, les utilisateurs d'air comprimé sont assurés de disposer des équipements les plus modernes, les plus fiables et les plus efficaces.

Les ingénieurs-conseil et techniciens expérimentés de KAESER apportent leurs conseils et proposent des solutions personnalisées à haut rendement énergétique pour tous les champs d'application de l'air comprimé. Le réseau informatique mondial du groupe international KAESER permet à tous les clients du monde d'accéder au savoir-faire de ce fournisseur de systèmes.

Le réseau mondial de distribution et de SAV assure une disponibilité maximale de tous les produits et services KAESER.

